Collagen Science Update – January 2026

Collagen is the most abundant structural protein in the human body, accounting for approximately 30% of total protein content (Shoulders & Raines, 2009). Due to its bioactivity, biocompatibility, and biodegradability, collagen plays a vital role in maintaining the strength and structural integrity of bones, skin, muscles, tendons, and cartilage (Salvatore et al., 2020). Although collagen is naturally synthesized in the body, its production declines with age, creating a need for external sources, most commonly derived from bovine, porcine, poultry, and marine origins (Szopa et al., 2022). This report focuses on the most commonly recognized sustainable source of collagen: marine collagen. 

Sources & Sustainability  

Although terrestrial mammals such as cows, pigs, and sheep are traditionally considered optimal sources for collagen extraction due to their high sequence homology with human collagen, their use is limited by several factors, including the potential risk of immune reactions, zoonotic disease transmission, and cultural or religious restrictions associated with porcine and bovine-derived materials (Salvatore et al., 2020). Consequently, marine collagen has gained increased attention as a promising alternative. Marine collagen is primarily obtained from by-products of the fishing industry and is associated with a lower risk of transmissible diseases, fewer ethical and religious concerns, and a more sustainable production approach. Moreover, valorization of fish processing by-products such as skin, scales, bones, cartilage, and fins helps reduce environmental pollution and enhances resource efficiency, making marine collagen an environmentally friendly and economically attractive option (Alcolea Ersinger et al., 2025).   

 

Sustainable applications of animal waste proteins 

Animal by-products are abundant sources of fibrillar proteins, particularly collagen and keratin. While collagen is a primary structural protein in the connective tissues, keratin is a major polypeptide in the skin, hair, and nails. Sustainable sources of these proteins are largely derived from streams associated with animal farming and aquaculture, including by-products from the leather and meat production industries such as skin trimmings, tendons, cartilage, and bone, all of which are rich collagen reservoirs. Recovering and recycling fibrillar proteins from these materials supports more sustainable resource use by reducing production costs and scaling down the environmental footprint associated with animal agriculture. Moreover, advances in extraction and processing technologies have enabled the efficient recovery of high-quality collagen and keratin from organic waste, aligning with green and circular economy principles.        

Access to the study: https://pubmed.ncbi.nlm.nih.gov/35458349/  

Reference: Timorshina, S., Popova, E., & Osmolovskiy, A. (2022). Sustainable Applications of Animal Waste Proteins. Polymers, 14(8), 1601. https://doi.org/10.3390/polym14081601  

 

Comprehensive review on collagen extraction from food by-products and waste as a value-added material 

The increasing consumption of animal-derived products in recent years has intensified the need for industries to implement more stringent waste management strategies to reduce environmental impacts. Protein-rich food waste represents a significant global concern, contributing to elevated carbon dioxide emissions and other ecological challenges. Repurposing these organic by-products offers a valuable and sustainable source of structural proteins, particularly collagen and gelatin. This review systematically examines the collagen content of animal-derived waste from both terrestrial and aquatic species and discusses how advances in the understanding of collagen structure and functionality are enabling the development of innovative extraction methods to recover high-quality proteins. Notably, there is growing industry consensus that marine-derived collagen will play a key role in driving future market growth, with recovered materials finding expanding applications across the chemical and biomedical sectors.          

Access to the study: https://www.sciencedirect.com/science/article/pii/S0141813024051791  

Reference: Salim, N. V., Madhan, B., Glattauer, V., & Ramshaw, J. A. M. (2024). Comprehensive review on collagen extraction from food by-products and waste as a value-added material. International Journal of Biological Macromolecules278, 134374. https://doi.org/10.1016/j.ijbiomac.2024.134374  

 

How significant are marine invertebrate collagens? Exploring trends in research and innovation 

Interest in collagen derived from marine invertebrates has resurfaced over the past two decades, driven by growing commercial demand following early research dating back to the 1970s. This study highlights regional differences in collagen sourcing, with jellyfish recognized as a globally prominent source, while Asia focuses primarily on molluscs and sea cucumbers, and Europe exploring a wider range of taxonomic groups. These sources contribute to a broad array of applications, including medical, dental, food, and toiletry products. Overall, marine invertebrate collagens represent a rapidly-expanding, innovation-driven market with strong potential in cosmetics, health supplements, and personalized nutrition.    

Access to the study: https://pubmed.ncbi.nlm.nih.gov/39852504/  

Reference: Almeida, M., Silva, T., Solstad, R. G., Lillebø, A. I., Calado, R., & Vieira, H. (2024). How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation. Marine drugs, 23(1), 2. https://doi.org/10.3390/md23010002  

 

Marine collagen and its derivatives: versatile and sustainable bio-resources for healthcare 

Marine collagen has gained increasing scientific and industrial traction over the past two decades as a promising ‘blue source’, leveraging by-products from the fish processing industry, such as skin and scales, for the production of collagen-based products. This review highlights application of marine collagen and its derivatives, including gelatin and peptides, across multiple healthcare sectors. In addition to the use of native collagen in the development of tissue engineering and wound-healing devices, collagen derivatives such as gelatin and peptides are increasingly incorporated into nutraceuticals and dietary supplements, particularly targeting weight management and glycemic control.  

Access to the studyhttps://pubmed.ncbi.nlm.nih.gov/32487384/  

Reference: Salvatore, L., Gallo, N., Natali, M. L., Campa, L., Lunetti, P., Madaghiele, M., Blasi, F. S., Corallo, A., Capobianco, L., & Sannino, A. (2020). Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials science & engineering. C, Materials for biological applications, 113, 110963. https://doi.org/10.1016/j.msec.2020.110963   

 

Jellyfish from fisheries by-catches as a sustainable source of high-value compounds with biotechnological applications 

The rapid growth and aging of the global population, together with its subsequent need for food and energy and the depletion of some natural resources have highlighted the urgent need for sustainable and alternative raw materials. This review examines the potential of jellyfish, a common fisheries by-catch, as a sustainable source of high-value compounds. Within the context of zero waste and circular economy, jellyfish, which is often discarded after being unintentionally caught in fishing gear, offers significant potential for biotechnological applications, including nutraceutical, biomedical, and biomaterial development, as a source of collagen and other high-value compounds.  

Access to the study: https://pubmed.ncbi.nlm.nih.gov/35447939/  

Reference: D’Ambra, I., & Merquiol, L. (2022). Jellyfish from Fisheries By-Catches as a Sustainable Source of High-Value Compounds with Biotechnological Applications. Marine drugs, 20(4), 266. https://doi.org/10.3390/md20040266  

 

Valorizing sardine scales: a circular approach to sustainable collagen for cosmetics and nutrition applications 

In recent years, a concerning trend has emerged in fish product consumption, with nearly two-thirds of the total fish biomass being discarded as waste. Concurrently, growing interest in natural collagen sources for cosmetics and dietary supplements has driven efforts to identify more sustainable alternatives. This study therefore investigated the recycling of sardine scales, a by-product of the canning industry, through collagen extraction for potential use in cosmetic formulations and supplements. Enzymatic and acid extraction methods were compared to produce collagen peptides from sardine scales, supporting their valorization for food, nutraceutical, and cosmetic applications within a circular blue economy framework. 

Access to the study: https://pubmed.ncbi.nlm.nih.gov/39568576/  

Reference: Santos Filipe, M., André, R., Ferreira, M., Diaz-Lanza, A. M., André, V., Alves, M. M., Pacheco, R., & Rijo, P. (2024). Valorizing sardine scales: a circular approach to sustainable collagen for cosmetics and nutrition applications. Frontiers in pharmacology, 15, 1443358. https://doi.org/10.3389/fphar.2024.1443358  

 

Bottom Line 

Collagen remains a critical structural protein for human health, yet age-related declines in endogenous production have driven growing demand for sustainable external sources. While bovine and porcine collagens have traditionally dominated the market, marine collagen has emerged as a leading sustainable alternative due to lower concerns with transmissible disease risk, fewer ethical and cultural constraints, and strong alignment with circular economy principles. Increasingly, fishery by-products and marine invertebrates such as jellyfish, molluscs, and sardine scales are being valorized into high-value collagen for biomedical, nutraceutical, cosmetic, and food applications. Collectively, progress in the extraction and processing technologies can support the efficient recovery of high-quality collagen from animal waste while maintaining alignment with sustainable and circular economy standards, making this sustainably-sources collagen an eco-friendly and innovation-driven “blue resource” with strong long-term potential across healthcare and nutrition sectors 

 

References 

Alcolea Ersinger, V. F., Lamas, D., & Massa, Á. (2025). A review of marine collagens: approaches on extractions, applications, market, and future trends. Environmental science and pollution research international, 32(27), 16077–16097. https://doi.org/10.1007/s11356-025-36684-x 

Salvatore, L., Gallo, N., Natali, M. L., Campa, L., Lunetti, P., Madaghiele, M., Blasi, F. S., Corallo, A., Capobianco, L., & Sannino, A. (2020). Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials science & engineering. C, Materials for biological applications, 113, 110963. https://doi.org/10.1016/j.msec.2020.110963  

Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual review of biochemistry, 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 

Szopa, K., Znamirowska-Piotrowska, A., Szajnar, K., & Pawlos, M. (2022). Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk. Molecules (Basel, Switzerland), 27(9), 3028. https://doi.org/10.3390/molecules27093028